SOME IMMERSION THEOREMS FOR MANIFOLDS

BY A. DUANE RANDALL

Abstract. In this paper we obtain several results on immersing manifolds into Euclidean spaces. For example, a spin manifold M^n immerses in R^{2n-3} for dimension $n \equiv 0 \mod 4$ and n not a power of 2. A spin manifold M^n immerses in R^{2n-4} for $n \equiv 7 \mod 8$ and n > 7. Let M^n be a 2-connected manifold for $n \equiv 6 \mod 8$ and n > 6 such that $H_3(M; Z)$ has no 2-torsion. Then M immerses in R^{2n-5} and embeds in R^{2n-4} . The method of proof consists of expressing k-invariants in Postnikov resolutions for the stable normal bundle of a manifold by means of higher order cohomology operations. Properties of the normal bundle are used to evaluate the operations.

1. **Preliminaries.** By a manifold M^n we mean that M is a closed connected smooth manifold of dimension n. We write $M \subseteq R^s$ and $M \subseteq R^t$ to denote the existence of a differentiable immersion of M into Euclidean s-space and a smooth embedding of M into Euclidean t-space respectively. A manifold M is called a spin manifold iff $w_1(M) = w_2(M) = 0$. The geometric dimension of a stable vector bundle ξ over a complex X, denoted g. The smallest integer k for which there is a k-plane bundle over X stably isomorphic to ξ . The coefficient group for singular cohomology is understood to be Z_2 whenever omitted. We denote the mod 2 Steenrod algebra by A. A(Y) denotes the semitensor algebra $H^*(Y) \otimes A$ defined in [19] for any space Y. Finally $\alpha(n)$ represents the number of 1's appearing in the dyadic expansion of the positive integer n. In [10] Glover proves that a k-connected manifold M^n embeds in R^{2n-2k} if it immerses in $R^{2n-2k-1}$ for $0 \le k \le (n-3)/4$. All spaces are assumed to be complexes (pathwise connected CW-complexes with basepoint) and all maps preserve basepoint. The author wishes to express his sincere gratitude to his advisor, Professor Emery Thomas.

A formulation of [18, Theorem II] for spin manifolds is the following

PROPOSITION 1.1. Let M^n be a spin manifold such that $\overline{w}_{n-k}(M) \neq 0$. There are nonnegative integers a_i for $j \geq 0$ satisfying the conditions:

- 1. $\sum a_i = k$,
- 2. $\sum 2^j a_i = n$,
- 3. a_1 is even,
- 4. if $a_0 = 0$, the first nonzero a_i and its immediate successor a_{i+1} must be even,
- 5. if a_2 is even, $a_1 \equiv 0 \mod 4$; if a_2 is odd, $a_1 \equiv 2 \mod 4$.

Received by the editors May 8, 1969.

AMS 1970 subject classifications. Primary 57D40, 55G45, 55G20, 55G40.

Key words and phrases. Immersion, embedding, spin manifold, normal bundle, Postnikov resolution, k-invariant, twisted cohomology operation, higher order cohomology operation, Thom complex, Poincaré duality, Dold manifold.

Proof. Massey and Peterson show in [18] that there exists an admissible monomial Sq^I in A of degree n-k such that $Sq^Ix \neq 0$ for some class x in $H^k(M)$. They write $Sq^I = Sq^{i_1} \cdots Sq^{i_p}$ and set $a_j = i_j - 2i_{j+1}$ for 0 < j < p and $a_p = i_p$. Since M is a spin manifold, the Wu classes $V_s(M) = 0$ for 0 < s < 4. So by the Adem relations $Sq^t : H^{n-t}(M) \to H^n(M)$ is trivial for t not divisible by 4. Thus $i_1 \equiv 0 \mod 4$ and condition 5 follows. Conditions 1-4 are established in [18].

COROLLARY 1.2. Let M^n be a spin manifold with $n \equiv j \mod 8$ for n > j and 3 < j < 8. Then $\overline{w}_{n-1}(M) = 0$.

THEOREM 1.3. Let M^n be a 3-connected manifold with $n \equiv j \mod 8$, n > j, and 3 < j < 8. Then $M \subseteq R^{2n-4}$ and $M \subseteq R^{2n-5}$.

Proof. Now $\overline{w}_{n-i}(M) = 0$ by (1.2) so $M \subseteq R^{2n-4}$ from [11, Theorem 2.3]. Let v denote the normal bundle to an embedding of M in R^{2n-4} . Note that $\pi_{n-1}(S^{n-5})$ is the 4-stem and so is trivial. Thus the only obstruction to a cross-section of the sphere bundle associated to v is the Euler class $\chi(v)$. But $\chi(v) = 0$ since v is the normal bundle to an embedding. So $M \subseteq R^{2n-5}$ by Hirsch [12].

REMARK. Set $m=2^r+1$ for r>1. Quaternionic projective space $QP^m \, \in R^{8m-5}$ from [22] and $QP^m \, \notin R^{8m-6}$ from [7] so (1.3) is a best possible result.

PROPOSITION 1.4. Let K be a complex with dimension $n \equiv 6 \mod 8$ and n > 14. Suppose that $H^{n-i}(K) = 0$ for $1 \le i \le 4$. Let ξ be any stable orientable bundle over K. Then $g.\dim \xi \le n-7$ iff $w_{n-6}(\xi) = 0$.

Proof. Write n=8t+6 for t>1 and let the map $\xi\colon K\to BSO$ classify the bundle ξ . The homotopy groups of the fiber V for the fibration $\pi\colon BSO(8t-1)\to BSO$ are listed in [13]. In particular, $\pi_{8t-1}(V)=Z_2$ while $\pi_{8t}(V)=\pi_{8t+5}(V)=0$. Thus ξ lifts to BSO(8t-1) iff $w_{8t}(\xi)=0$.

THEOREM 1.5. Let M^n be a 4-connected manifold with $n \equiv 6 \mod 8$ and n > 14. Then $M \subseteq R^{2n-7}$ and $M \subseteq R^{2n-6}$.

Proof. Let v denote the stable normal bundle of M. By (1.2) $w_{n-6}(v) = 0$. Poincaré duality gives $H^{n-i}(M) = 0$ for $1 \le i \le 4$. Thus $M \subseteq R^{2n-7}$ from (1.4) and [12]. Finally $M \subseteq R^{2n-6}$ by Glover [10].

2. Cohomology operations and k-invariants. In [25] Thomas describes a method for expressing k-invariants in a Postnikov resolution for a fibration in terms of higher order cohomology operations applied to classes coming from the base of the fibration. We consider only a Postnikov resolution for the fibration $\pi: B_m \to B$ through dimensions $\leq t$ where π^* is surjective and m < t < 2m. Here B_m and B denote either BSO(m) and BSO or B Spin (m) and B Spin respectively. We derive from the generating class theorem [25, Theorem 5.9] a version for the case of independent second-order k-invariants in a resolution for π . Consider the following commutative diagram.

(2.1)
$$\Omega C \xrightarrow{q} E \\
\downarrow p \\
B_{-} \xrightarrow{\pi} B \xrightarrow{w_{r+1} \times w_{s+1}} C$$

Here E represents the first stage in a resolution for π through dimensions $\leq t$ and so p is the principal fiber map classified by the vector (w_{r+1}, w_{s+1}) of Stiefel-Whitney classes. Let ι_r denote the fundamental class of the factor $K(Z_2, r)$ in ΩC and define ι_s similarly. Let $m \colon \Omega C \times E \to E$ denote multiplication in the principal fibration and $\rho \colon \Omega C \times E \to E$ the projection map. Suppose that a class k in $H^p(E)$ for m is a second-order <math>k-invariant for π independent of w_{s+1} . That is, $\mu(k) = \hat{\alpha} \circ (\iota_r \otimes 1)$ for some class $\hat{\alpha}$ in A(B). The morphism $\mu \colon H^*(E) \to H^*(\Omega C \times E, E)$ is defined in [25] so that $j^* \circ \mu = m^* - \rho^*$ for the inclusion $j \colon \Omega C \times E \to (\Omega C \times E, E)$. From construction of the resolution for π , ker $p^* = \ker \pi^*$ through dimensions $\leq t$ so ker $q^* \cap \ker \mu = 0$ through dimensions $\leq t$ by [25, Proposition 5.11].

We suppose also that a class v in $H^*(B)$ is a generating class for k. That is, there is a complex K, a map $\eta: B \to K$, and a class α in A(K) such that $\hat{\alpha} = \eta^* \alpha$. There are vectors $\beta = (\beta_1, \ldots, \beta_j)$ and $\psi = (\psi_1, \ldots, \psi_j)$ of primary operations over A(K) and a primary operation φ over A(K) such that $(\varphi, \psi)v = (w_{r+1}, 0)$ and there is a relation

$$\alpha \cdot \varphi + \beta \cdot \psi = 0.$$

Let Ω be any secondary operation associated to (2.2). Then Ω determines a coset L of Indet^p $(B; \Omega, \eta)$ such that $\Omega(\pi^*v, \pi^*\eta) = \pi^*L$. Under the above assumptions the generating class theorem states

Theorem 2.3. $k \in \Omega(p^*v, p^*\eta) - p^*L$.

Proof. Consider the following commutative diagram of complexes and maps.

$$K(Z_{2}, s) \xrightarrow{i} \Omega C \xrightarrow{j} E_{2}$$

$$q_{2} \downarrow p_{2}$$

$$K(Z_{2}, r) \longrightarrow E_{1} \xrightarrow{w_{s+1} \circ p_{1}} K(Z_{2}, s+1)$$

$$\downarrow p_{1}$$

$$B_{m} \xrightarrow{\pi} B \xrightarrow{w_{r+1}} K(Z_{2}, r+1)$$

Let $\mu_1: H^*(E_1) \to H^*(K(Z_2, r) \times E_1, E_1)$ and $\mu_2: H^*(E_2) \to H^*(K(Z_2, s) \times E_2, E_2)$ be the morphisms corresponding to μ for the principal fiber maps p_1 and p_2 respectively. Identify E_2 with E in (2.1) as fiber spaces over E via a fiber-preserving homeomorphism and regard the composite map $p_1 \circ p_2$ as p. Let k_1 in $H^p(E_1)$ be a class such that $\mu_1(k_1) = \hat{\alpha}(\iota \otimes 1)$ where ι is the fundamental class of $K(Z_2, r)$. Note that $\mu(p_2^*k_1) = \hat{\alpha}(\iota_r \otimes 1)$ so $p_2^*k_1 = k$. (See [25] or [30].) There is a class h in $\ker q_1^* \cap \ker \mu_1 \cap H^p(E_1)$ such that $k_1 + h \in \Omega(p_1^*v, p_1^*\eta) - p_1^*L$ by [25, Theorem

5.9]. Since $p_2^*h \in \ker q^* \cap \ker \mu \cap H^p(E) = 0$, the result follows by naturality of Ω . REMARK 1. Let $\xi \colon X \to B$ classify a stable vector bundle ξ over a complex X for which $w_{r+1}(\xi) = w_{s+1}(\xi) = 0$. Then ξ lifts to E in (2.1) and, by definition, $k(\xi) = \bigcup_g g^*k$ where g ranges over all liftings of ξ . Note that $k(\xi)$ is a coset of the subgroup $(\hat{\alpha}H^*(X)) \cap H^p(X)$, the indeterminacy subgroup of $k(\xi)$. If $0 \in \Omega(\pi^*v, \pi^*\eta)$ and Indetp (X; Ω , $\xi^*\eta$) = indeterminacy subgroup of $k(\xi)$, then $k(\xi) = \Omega(\xi^*v, \xi^*\eta)$ from (2.3).

REMARK 2. In applications of (2.3) in §3 and §4 the class v is the Stiefel-Whitney class w_p for p an even integer. Suppose an operation Ω associated to relation (2.2) can be chosen 1-trivial if B=BSO or spin trivial if B=B Spin. (See [26].) Let $i: B_p \subset B_m$ denote the standard inclusion. It follows that $\Omega(\pi^*v, \pi^*\eta) \cap \ker i^* \neq \emptyset$ in $H^p(B_m)$ for this choice of Ω from [26, Theorem 3.3].

Versions of Thomas' generating class theorem for expressing a k-invariant lifted to the Thom complex of a bundle by means of an Adams-Maunder operation applied to the Thom class are given in [27], [28], and [21]. An application in §4 uses a stable tertiary operation which we define here. Consider the following stable integral relations and associated secondary operations for t>1.

(2.4)
$$\Omega_1: Sq^2Sq^{4t+2} = 0, \qquad \Omega_2: (Sq^2Sq^1)Sq^{4t+2} + Sq^1Sq^{4t+4} = 0.$$

Let Ω denote the 2-valued secondary operation (Ω_1, Ω_2) . By [16] Ω_1 and Ω_2 can be chosen so that $\iota \cdot Sq^2\iota \in \Omega_1(\iota)$ and $0 \in \Omega_2(\iota)$ where ι denotes the fundamental class of K(Z, 4t+1). For this choice of Ω [17, Lemma 3.1] states that the relation $Sq^2\Omega_1 + Sq^1\Omega_2 = Sq^{4t+3}Sq^2$ holds stably and with zero indeterminacy between the component operations Ω_i of Ω .

DEFINITION 2.5. A spin integral cohomology class x is an integral cohomology class for which $Sq^2x=0$.

The fiber E_n of the map

$$K(Z, n) \xrightarrow{Sq^2 \iota_n} K(Z_2, n+2)$$

is a classifying space for spin integral classes of dimension n. We regard E_n as $\Omega^m E_{n+m}$ and $e_n = \sigma^m (e_{n+m})$ where e_j is the fundamental class of E_j and σ is the suspension homomorphism.

DEFINITION 2.6. A class z in $H^*(E_n)$ is called stable if, for every positive integer m, there is a class y in $H^*(E_{n+m})$ such that $\sigma^m(y) = z$.

Set $E = E_{4t+1}$ with fundamental class e. Note that $(0, 0) \in \Omega(e)$ for Ω as chosen above. Consider the following stable relation on spin integral classes:

$$(2.7) Sq^2\Omega_1 + Sq^2\Omega_2 = 0.$$

THEOREM 2.8. A stable tertiary operation ψ associated to relation (2.7) can be chosen so that $\lambda e \cdot y \in \psi(e)$ where y generates $H^{4t+4}(E)$ and λ is in \mathbb{Z}_2 .

Proof. The universal example for a tertiary operation associated to (2.7) is a fiber space over E. Thus any choice for ψ can be altered by stable classes in $H^{8t+5}(E)$.

It has a vector space basis over Z_2 consisting of stable classes Sq^Ie for certain admissible monomials Sq^I in A and also the nonstable class $e \cdot y$ where y generates $H^{4t+4}(E)$. This follows from the Serre spectral sequence applied to the fibration $r: E \to K(Z, 4t+1)$ with fiber $K(Z_2, 4t+2)$ and classifying map Sq^{2t} . The result follows.

REMARK. It follows that $\lambda = 1$ by a result of L. Kristensen. An immediate consequence of (2.8) is the following.

COROLLARY 2.9. Let X be a complex such that $H^{4t+4}(X)=0$. A stable tertiary operation ψ associated to relation (2.7) can be chosen, independently of X, so that $0 \in \psi(x)$ for every spin integral class x in $H^s(X)$ for $s \leq 4t+1$.

In §4 it is necessary to evaluate a stable secondary operation on 1-dimensional classes. Recall that the excess of a homogeneous element θ in the Steenrod algebra A, written ex (θ) , is the minimum value of the excesses of the admissible monomials in A whose sum is θ . Consider the following relation in A of degree n:

$$(2.10) Sq^1\theta + \sum_{i=1}^s \gamma_i \theta_i = 0$$

where ex $(\theta_i) > 1$ and degree $(\gamma_i) > 1$ for $1 \le i \le s$. Let Ω be any stable secondary operation associated to (2.10) and let ρ denote mod 2 reduction of integral classes.

PROPOSITION 2.11. Let X be a complex and x a class in $H^1(X)$ in the domain of Ω such that $x^n = 0$. If $ex(\theta) > 1$, $0 \in \Omega(x)$. If $ex(\theta) = 1$, then $n = 2^r$ for some integer r and $\rho(u) \in \Omega(x)$ where $2u = y^{2^{r-1}}$ in $H^n(X; Z)$ and $\rho(y) = x^2$.

Proof. Let $f: X \to RP^{\infty}$ classify x and let α denote the generator of $H^*(RP^{\infty})$. If ex $(\theta) > 1$, the functional cohomology operation associated to (2.10) vanishes on α by [2, Teorema 6.6]. It follows from the Peterson-Stein formula [2, Teorema 5.2] and the assumption $x^n = 0$ that $0 \in \Omega(x)$. If ex $(\theta) = 1$, clearly $n = 2^r$ for some integer r and $\theta(\alpha) = \alpha^{2^r}$. Consider the following commutative diagram.

$$(2.12) K(Z_2, n-1) \xrightarrow{i} E$$

$$X \xrightarrow{f} RP^{\infty} \xrightarrow{\theta(\alpha)} K(Z_2, n)$$

Here p is the principal fiber map classified by the map $\theta(\alpha)$. Since $\alpha^2 = \rho(\beta)$ for β in $H^2(RP^{\infty}; Z)$, $p^*\beta^{2^{r-1}} = 2z$ for z in $H^n(E; Z)$. Further, $i^*\rho(z) = Sq^1\iota$ since this is true in the universal example for division by 2. (See [9].) Applying the Serre spectral sequence to the fiber map p shows that $H^n(E)$ is generated by $\rho(z)$. Set $y = f^*\beta$ and $2u = y^{2^{r-1}}$. The universal example for Ω on 1-dimensional classes is a fiber space over RP^{∞} fiber homotopically equivalent to $E \times \prod_{i=1}^s K(Z_i)$, degree θ_i). It follows that $\rho(u) = g^*\rho(z) \in \Omega(x)$.

COROLLARY 2.13. Let Ω be a stable secondary operation associated to relation (2.10) with n even. Let M^n be an orientable manifold. Then any class u in $H^1(M)$ lies in the domain of Ω and $0 \in \Omega(u)$.

Proof. Since M is orientable, $u^n = Sq^1u^{n-1} = 0$. The result follows from (2.11) and the fact $H^n(M; Z) = Z$.

3. Immersions of k-connected manifolds. In this section we derive some immersion results for certain k-connected manifolds for small values of k.

PROPOSITION 3.1. Let K be a complex of dimension $n \equiv 6 \mod 8$ with n > 6. Assume that $H^{n-1}(K) = H^{n-2}(K) = 0$ and $Sq^1H^{n-4}(K) \subseteq Sq^2H^{n-5}(K)$. Let ξ be a stable spin bundle over K with $w_{n-6}(\xi) = 0$. Then $g.\dim \xi \leq n-5$.

Proof. Set n=8t+6 for t>0 and refer to Postnikov resolution III in §5. Now $w_{8t+2}(\xi)=w_{8t+4}(\xi)=0$ from the Wu relations since $w_{8t}(\xi)=0$. Let the map $\xi\colon K\to B$ Spin classify the bundle ξ . Thus $k_1^1(\xi)$ is defined and ξ clearly lifts to B Spin (8t+1) iff $0\in k_1^1(\xi)$. Note that k_1^1 is independent of w_{8t+4} . One checks that w_{8t} in $H^*(B$ Spin) is a generating class for k_1^1 with respect to the relation

(3.2)
$$Sq^2Sq^2 + Sq^1(Sq^2Sq^1) = 0.$$

Any secondary operation Ω associated to (3.2) is spin trivial since B Spin is 3-connected. By [26] for any choice of Ω , $0 \in \Omega(w_{8t}) \subseteq H^{8t+3}(B \text{ Spin } (8t+1))$ since $\ker i^* \cap H^{8t+3}(B \text{ Spin } (8t+1)) = 0$ where $i : B \text{ Spin } (8t) \subseteq B \text{ Spin } (8t+1)$. Set $L = \operatorname{Indet}^{8t+3}(B \text{ Spin}; \Omega)$. Then $k_1^1 \in \Omega(p_1^* w_{8t})$ by Theorem 2.3. The indeterminacy of $k_1^1(\xi) = \operatorname{Indet}^{8t+3}(K; \Omega)$ since by hypothesis $Sq^1 H^{8t+2}(K) \subseteq Sq^2 H^{8t+1}(K)$. Thus $0 \in \Omega(w_{8t}(\xi)) = k_1^1(\xi)$.

THEOREM 3.3. Let M^n be a 2-connected manifold with $n \equiv 6 \mod 8$ and n > 6. Assume $H_3(M; \mathbb{Z})$ has no 2-torsion. Then $M \subseteq R^{2n-5}$ and $M \subseteq R^{2n-4}$.

Proof. Let v denote the stable normal bundle of M. By $(1.2) w_{n-6}(v) = 0$. $H^{n-2}(M) = H^{n-1}(M) = 0$ and $H^{n-3}(M; \mathbb{Z})$ has no 2-torsion by Poincaré duality so $Sq^1H^{n-4}(M) = 0$. Thus g.dim $v \le n-5$ by (3.1) and so $M \subseteq R^{2n-5}$ by Hirsch [12]. $M \subseteq R^{2n-4}$ by Glover [10].

THEOREM 3.4. Let M^n be a 3-connected manifold with $n \equiv 7 \mod 8$ and n > 7. Suppose $Sq^1H^{n-5}(M) \subseteq Sq^2H^{n-6}(M)$. Then $M \subseteq R^{2n-6}$.

Proof. Write n = 8t + 7 for t > 0 and refer to resolution III in §5. Let $v: M \to B$ Spin classify the stable normal bundle of M. By (1.2) $w_{8t}(v) = 0$ so $w_{8t+2}(v) = 0$ from the Wu relations. Clearly v lifts to B Spin (8t+1) iff $0 \in k_1^1(v)$ and $k_4^1(v) = 0$. The proof of (3.1) shows that $0 \in k_1^1(v)$.

Note that k_4^1 is independent of w_{8t+2} . Let U_v and T_v denote the Thom class and

Thom complex of v respectively. By [15] we can choose a stable secondary operation Γ associated to the relation

$$Sq^{4}Sq^{8t+4} + Sq^{8t+7}Sq^{1} + Sq^{8t+6}Sq^{2} = 0$$

such that $u \cdot Sq^4u \in \Gamma(u)$ for any class u of dimension 8t+3 in the domain of Γ . Applying the technique for isolating an independent k-invariant from a resolution in [28] and the generating class theorem [28, Theorem 6.5] gives the result $U_v \cdot k_4^1(v) = \Gamma(U_v)$ in $H^*(T_v)$. But the top class in $H^*(T_v)$ is spherical by [16] so $\Gamma(U_v) = 0$. Thus $g \cdot \dim v \leq 8t+1$ and the result follows by [12].

Let $M^n = S^3 \times CP^{2r+1}$ for r > 1. It follows from [7] that $M \nsubseteq R^{2n-7}$ so the following result is best possible.

THEOREM 3.5. Let M^n be a simply connected spin manifold with $n \equiv 5 \mod 8$ and n > 13. Suppose the following conditions hold:

- 1. $x^2 = 0$ iff x = 0 for any x in $H^2(M)$.
- 2. $y^2 = 0$ iff $Sq^2y = 0$ for any y in $H^3(M)$.
- 3. $\overline{w}_{n-6}(M) = 0$ if $n = 2^r + 5$.

Then M immerses in \mathbb{R}^{2n-6} .

Proof. Write n=8t+5 for t>1 and refer to Postnikov resolution IV in §5. Let $v: M \to B$ Spin classify the stable normal bundle of M. Note that $w_{8t}(v)=0$ by (1.2) so v lifts to E_1 . A simple argument using Poincaré duality and the Wu classes shows that $Sq^2: H^{n-4}(M) \to H^{n-2}(M)$ is an epimorphism iff condition 1 holds. If v lifts to E_2 , $0 \in k_1^2(v)$ since the indeterminacy subgroup of $k_1^2(v) = Sq^2H^{n-4}(M)$. Since M is simply connected, v lifts to B Spin (8t-1) iff $0 \in k_1^2(v)$ and $k_3^2(v)=0$.

The functional cohomology operation associated to the relation

$$(3.6) (Sq4Sq2)Sq8t + Sq8t+4Sq2 + Sq8t+3(Sq2Sq1) = 0$$

vanishes on classes of dimension <8t in its domain by [2, Teorema 6.6]. By the Peterson-Stein formula [2, Teorema 5.2] a stable secondary operation Γ associated to (3.6) can be chosen independently of u so that $\lambda u \cdot Sq^6u \in \Gamma(u)$ for fixed λ in \mathbb{Z}_2 where u is any class of dimension 8t-1 in the domain of Γ . Applying the generating class theorem [28, Theorem 6.5] gives

$$U_{E_1} \cdot (k_3^1 + \lambda p_1^*(w_6 w_{8t-1})) \in \Gamma(U_{E_1}).$$

Note that $Sq^2(w_4 \cdot w_{8t-1}) = w_6 w_{8t-1} + w_4 w_{8t+1}$ so $w_6(v) w_{8t-1}(v) = 0$. Thus $U_v \cdot k_3^1(v) = \Gamma(U_v)$ since $\Gamma(U_v)$ has zero indeterminacy. But the top class in $H^*(T_v)$ is spherical by [16] so $k_3^1(v) = 0$.

One checks that w_{8t-2} in $H^*(B \operatorname{Spin})$ is a generating class for k_1^1 with respect to the relation

$$(3.7) Sq^2(Sq^2Sq^1) = 0.$$

Let Ω be the spin trivial stable secondary operation associated to (3.7). (See [26].) By [26, Theorem 3.3] (or Remark 2 in §2) $0 \in \Omega(w_{8t-2})$ in $H^*(B \operatorname{Spin}(8t-1))$ since

ker $i^* \cap H^{8t+2}(B \operatorname{Spin}(8t-1)) = 0$ where $i: B \operatorname{Spin}(8t-2) \subseteq B \operatorname{Spin}(8t-1)$. Thus $k_1^1 \in \Omega(p_1^*w_{8t-2})$ by the generating class theorem [25, Theorem 5.9]. It follows from Poincaré duality and the Wu classes that condition 2 holds iff $Sq^2H^{8t}(M) = Sq^2Sq^1H^{8t-1}(M)$. So $k_1^1(v) = \Omega(w_{8t-2}(v))$. But from [26] $\Omega = \varphi \circ \delta$ where φ is the unique secondary operation associated to the integral relation $Sq^2Sq^2 = 0$ and δ is the Bockstein operator. Since $\overline{w}_{n-6}(M) = 0$ from [18] and condition 3, it follows that $0 \in \varphi(\overline{w}_{n-6}(M)) = \varphi(\delta w_{8t-2}(v)) = \Omega(w_{8t-2}(v)) = k_1^1(v)$. So g.dim $v \le n-6$ and the result follows by Hirsch [12].

4. Orientable and spin manifolds. In this section we establish immersions for some orientable and spin manifolds. QP^n has a best possible immersion in R^{8n-3} for $n=2^r$ by [16]. CP^m does not immerse in R^{4m-3} for $m=2^r+2^s$ with r>s>0 by [22]. For spin manifolds we prove the following

THEOREM 4.1. Let M^n be a spin manifold with $n \equiv 0 \mod 4$. Then M immerses in R^{2n-3} for n not a power of 2. M immerses in R^{2n-3} iff $\overline{w}_{n-2}(M) = 0$ for $n = 2^r$ with r > 3.

Proof. Set n=4t+4 for t>1 and refer to Postnikov resolution I in §5. Let $v: M \to B$ Spin classify the stable normal bundle v of M. Now $w_{4t+2}(v) = w_{4t+4}(v) = 0$ by (1.1) and the assumption $\overline{w}_{n-2}(M) = 0$ for $n=2^r$. Note that $k_1^2(v)$ and $k_2^2(v)$ have zero indeterminacy. Let U_{4t+1} denote the Thom class associated to the universal bundle γ_{4t+1} over B Spin (4t+1). Let $\Omega = (\Omega_1, \Omega_2)$ be the double secondary operation associated to relation (2.4) such that $(0,0) \in \Omega(e)$. (See §2.) Thus $(0,0) \in \Omega(U_{4t+1})$. Let T_v and U_v denote the Thom complex and Thom class associated to v respectively. Applying a version of the generating class theorem [27, Theorem 6.4] for expressing simultaneously two second-order k-invariants lifted to the Thom complex and then checking indeterminacies gives the result that $U_v \cdot (k_1^1(v), k_2^1(v)) = \Omega(U_v)$. (See also [21].) But $U_v \cdot k_2^1(v) = \Omega_2(U_v) = 0$ since the top class in $H^*(T_v)$ is spherical by [16]. We apply a duality theorem of Adem-Gitler [3, Theorem 5.1] in order to show $k_1^1(v) = 0$. Let Γ denote the secondary operation dual to Ω_1 and associated to the relation

(4.2)
$$c(Sq^{4t+2})Sq^2 + Sq^1c(Sq^{4t+3}) = 0$$

where c is the anti-automorphism of A. Then $\Omega_1(U_v)=0$ iff Γ vanishes on its domain of definition in $H^1(M)$ from [3]. By (2.13) Γ vanishes on every class in $H^1(M)$ so $k_1^1(v)=0$.

The k-invariant k_1^2 can be expressed by the tertiary operation ψ of Theorem 2.8. Since B Spin (4t+1) is 3-connected, $0 \in \psi(U_{4t+1})$ by (2.9). Note that $k_1^2(v)$ has zero indeterminacy. Applying a version of the generating class theorem for a third-order k-invariant lifted to the Thom complex [21, Proposition 4.6] gives the result $U_v \cdot k_1^2(v) \in \psi(U_v)$. But $\psi(U_v) = 0$ since the top class in $H^*(T_v)$ is spherical by [16] so $k_1^2(v) = 0$. Thus v lifts to B Spin (4t+1) and the result follows by Hirsch [12].

REMARK. It follows from [31, Lemma 1] that a 4-dimensional spin manifold immerses in R^5 .

Thomas proves in [26] that a spin manifold M^n immerses in R^{2n-4} for $n \equiv 3 \mod 8$ and n > 3.

THEOREM 4.3. Let M^n be a spin manifold with $n \equiv 7 \mod 8$ and n > 7. Let ξ be a stable spin bundle over M. If $w_{n-7}(\xi) = 0$, $g.\dim \xi \leq n-4$. Thus $M \subseteq R^{2n-4}$.

Proof. Set n=8t+7 and refer to resolution II in §5. Let $\xi: M \to B$ Spin classify the bundle ξ . Now $w_{8t+4}(\xi)=0$ since $w_{8t+4}=Sq^4w_{8t}+w_4\cdot w_{8t}$ in $H^*(B \text{ Spin})$. We express k_2^1 by means of a twisted secondary operation due to Thomas. Consider the following relation in $A(K(Z_2, 4))$:

$$(4.4) \gamma \cdot \gamma + Sq^2(\gamma \cdot Sq^2) + Sq^1(Sq^2\gamma Sq^1) + \delta \cdot (Sq^2Sq^1) = 0$$

where $\gamma = \iota \otimes 1 + 1 \otimes Sq^4$ and $\delta = Sq^1\iota \otimes 1$. Let $w_4 \colon B \operatorname{Spin} \to K(Z_2, 4)$ classify the Stiefel-Whitney class w_4 . One checks that w_{8t} in $H^*(B \operatorname{Spin})$ is a generating class for k_2 with respect to the relation (4.4). Let φ be a secondary operation associated to (4.4). Let U_s denote the Thom class associated to the universal bundle γ_s over $B \operatorname{Spin}(s)$ for s > 7. Clearly $\varphi(U_s, w_4)$ is defined and φ is spin trivial since $U_s \cdot w_7 = Sq^1(U_s \cdot w_6)$. Let $j \colon B \operatorname{Spin}(8t) \subseteq B \operatorname{Spin}(8t+3)$ denote the standard inclusion. Since $\ker j^* \cap H^{8t+7}(B \operatorname{Spin}(8t+3))$ is generated by w_6w_{8t+1} and w_4w_{8t+3} , it follows from Remark 2 in §2 that

$$\lambda_1 w_6 w_{8t+1} + \lambda_2 w_4 w_{8t+3} \in \varphi(w_{8t}, w_4)$$

in $H^{8t+7}(B \text{ Spin } (8t+3))$ for some λ_1 and λ_2 in Z_2 . Since $Sq^5Sq^2w_{8t} = w_4w_{8t+3}$ and $Sq^2(w_4 \cdot Sq^1w_{8t}) = w_6w_{8t+1}$, one has $0 \in \Gamma(w_{8t}, w_4)$ in $H^*(B \text{ Spin } (8t+3))$ for

$$\Gamma = \varphi + \lambda_1 (1 \otimes Sq^5Sq^2) + \lambda_2 Sq^2(\iota \otimes Sq^1).$$

The generating class theorem [25, Theorem 5.9] gives $k_2^1 \in \Gamma(p_1^*w_{8t}, p_1^*w_4)$. Now Indet^{8t+7} $(M; \Gamma, w_4(\xi)) = (Sq^4 + \cdot w_4(\xi))H^{n-4}(M) = \text{indeterminacy of } k_2^1(\xi)$. Thus $0 \in \Gamma(w_{8t}(\xi), w_4(\xi)) = k_2^1(\xi)$. The proof of Theorem 1.3 in [26] shows that $k_1^1(\xi) = k_1^2(\xi) = 0$. Thus ξ lifts to B Spin (8t+3). By (1.2) $\overline{w}_{n-7}(M) = 0$ so g.dim $v \le n-4$ where v denotes the stable normal bundle of M.

Theorem 4.3 has an immediate application to a problem investigated by Thomas in [29]. Here we require a manifold M to mean only a smooth connected manifold without boundary. Let $\tau_0(M)$ and v(M) denote the stable tangent and normal bundles of a manifold M respectively. Given a map $f \colon M \to N$ between manifolds, define the stable bundle $v_f = f^*\tau_0(N) + v(M)$. The map f is called a spin map if $f^*w_1(N) = f^*w_2(N) = 0$ and M is a closed spin manifold.

THEOREM 4.5. Let M^{8t+7} and N^{16t+10} be manifolds with t > 0. Suppose $f: M \to N$ is a spin map. If $w_{8t}(v_f) = 0$, then f is homotopic to an immersion.

Proof. Note that v_f is a stable spin bundle over M. By (4.3) g.dim $v_f \le 8t + 3$ = dim N-dim M. The result follows from the formulation of Hirsch's theorem in [29].

Manifolds again are assumed to be closed. We prove

THEOREM 4.6. Let M^n be an orientable manifold with $n \equiv 1 \mod 4$ and n > 9. Suppose the following conditions hold:

- 1. $u^2 = 0$ iff u = 0 for any u in $H^1(M)$.
- 2. $w_2(M) = u^2$ for some u in $H^1(M)$ iff $w_2(M) = 0$.
- 3. $Sq^1y=0$ for any y in $H^2(M)$ such that $y^2=0$.
- 4. $\overline{w}_{n-5}(M) = 0$ if $\alpha(n) < 5$.

Then M immerses in R^{2n-4} .

Proof. Write n=4t+5 and refer to Postnikov resolution V in §5. Let $v: M \to B$ classify the stable normal bundle v of M.

Case I. B = BSO and $w_2(M) \neq 0$.

Condition 4 and [18] give $w_{4t+2}(v) = w_{4t+4}(v) = 0$. Condition 1 is equivalent to $Sq^1H^{4t+3}(M) = H^{4t+4}(M)$ from Poincaré duality and the Wu relations. So $0 \in k_2^1(v)$ since $Sq^1H^{4t+3}(M) = \text{indeterminacy of } k_2^1(v)$. Note that $0 \in k_1^2(v)$ also through indeterminacy if v lifts to E_2 . Let $g: M \to E_1$ be a lifting of v such that $g^*k_2^1 = 0$. Condition 2 is equivalent to the condition $Sq^2y \neq 0$ and $Sq^1y = 0$ for some class y in $H^{n-2}(M)$. Alter g, if necessary, to give a lifting $h: M \to E_1$ of v such that $h^*k_3^1 = 0$ and $h^*k_2^1 = g^*k_2^1 = 0$. Note that

$$(Sq^2 + w_2(M))Sq^1H^{n-4}(M) = 0 = (Sq^4 + \overline{w}_4(M))H^{n-4}(M).$$

Thus v lifts to BSO(4t+1) iff $0 \in k_1^1(v)$. Assume that $\alpha(n) > 4$. Let φ be the secondary operation associated to the relation— $Sq^2Sq^{4t+2} + Sq^{4t+3}Sq^1 = 0$ —such that $u \cdot Sq^2u \in \varphi(u)$ for any class u of dimension 4t+1 in the domain of φ . The generating class theorem [28, Theorem 6.5] gives the result $U_{E_1} \cdot (k_1^1 + p_1^* w_2 w_{4t+1}) \in \varphi(U_{E_1})$. But $w_{4t+1}(v) = 0$ for $\alpha(n) > 4$ by [18] so $U_v \cdot k_1^1(v) = \varphi(U_v)$. Let Γ denote the operation dual to φ associated to the relation (4.2). By [3] φ vanishes on U_v iff Γ vanishes on its domain of definition in $H^2(M)$. Recall from [18] that a homogeneous element θ of degree r-s in the Steenrod algebra A vanishes on s-dimensional classes if $\alpha(r) > s$. Thus the functional cohomology operation ψ associated to relation (4.2) vanishes on 2-dimensional classes since $\alpha(4t+5) > 4$. (See [2].) It follows from condition 3 and the Peterson-Stein formula in [2] that $\Gamma(u) = \psi(u)$ for any class u in $H^2(M)$ in the domain of Γ . So $0 \in k_1^1(v)$ for $\alpha(n) > 4$.

Suppose now that $\alpha(n) < 5$. Consider the relation in $A(K(Z_2, 2))$:

$$\beta \cdot \beta + Sq^1 \cdot (\beta \cdot Sq^1) = 0$$

where $\beta = \iota \otimes 1 + 1 \otimes Sq^2$. Let the map $w_2 : BSO \to K(Z_2, 2)$ induce an $A(K(Z_2, 2))$ -module structure on $H^*(BSO)$. By §6 of [25] a twisted secondary operation Ω

associated to (4.7) can be chosen so that $k_1^1 \in \Omega(p_1^*w_{4t}, p_1^*w_2)$. Condition 3 is equivalent to the condition $Sq^1H^{n-3}(M) \subseteq (Sq^2 + w_2(M))H^{n-4}(M)$. So

$$0 \in \Omega(w_{4t}(v), w_2(v)) = k_1^1(v)$$

by condition 4. Thus v lifts to BSO(4t+1).

Case II. B=B Spin and $w_2(M)=0$. The only essential difference from Case I is the computation of $k_3^1(v)$. We choose by [15] the secondary operation Γ associated to the stable integral relation

$$(4.8) Sq^{4}Sq^{4t+2} + Sq^{4t+4}Sq^{2} + tSq^{2}Sq^{4t+4} = 0$$

such that $u \cdot Sq^4u \in \Gamma(u)$ for any spin integral class u of dimension 4t+1. By the generating class theorem $U_{E_1} \cdot (k_3^1 + p_1^* w_4 w_{4t+1}) \in \Gamma(U_{E_1})$. $Sq^1(w_4 w_{4t}) = w_4 w_{4t+1}$ so $w_4(v) \cdot w_{4t+1}(v) = 0$. Thus $0 = \Gamma(U_v) = U_v \cdot k_3^1(v)$ since the top class in $H^*(T_v)$ is spherical by [16]. So $k_3^1(v) = 0$ and the result follows.

Refer to [6] and [32] for the cohomology ring and total Stiefel-Whitney class of the Dold manifold P(m, n). A consequence of Theorem 4.6 is the following

COROLLARY 4.9. Set N=m+2n. Let P(m, n) be any orientable Dold manifold with $N \equiv 1 \mod 4$, m > 1, n > 0, and $n \ne 2^r$ when $\alpha(N) \le 3$. Then $P(m, n) \subseteq R^{2N-4}$.

- 5. **Postnikov resolutions.** These Postnikov resolutions for the fiber map $\pi: B_m \to B$ are constructed by the techniques of [24]. We refer the reader also to [14] and [8] for the theory and construction of modified Postnikov resolutions. The homotopy groups of the fiber for π appear in [13] and [20]. The tower of spaces is displayed only for resolution I. The k-invariant k_j^i represents a class in $H^*(E_i)$ whose defining relation is a relation in $H^*(E_{i-1})$ where $E_0 = B$.
- 5.1. Postnikov resolution I for the fibration π : B Spin $(4t+1) \rightarrow B$ Spin for stable spin bundles over complexes of dimension $\leq 4t+4$ for t>1.

$$B \operatorname{Spin} (4t+1)$$

$$\downarrow q_{3}$$

$$E_{3}$$

$$\downarrow p_{3}$$

$$\downarrow k_{1}^{2} \times K(Z_{2}, 4t+4)$$

$$\downarrow p_{2}$$

$$\downarrow k_{1}^{1} \times k_{2}^{1} \times K(Z_{2}, 4t+3) \times K(Z_{2}, 4t+4)$$

$$\downarrow p_{1}$$

$$\downarrow B \operatorname{Spin} \xrightarrow{W_{4t+2} \times W_{4t+4}} K(Z_{2}, 4t+2) \times K(Z_{2}, 4t+4)$$

Defining relations for k-invariants:

$$k_1^1$$
: $Sq^2w_{4t+2} = 0$,
 k_2^1 : $Sq^2Sq^1w_{4t+2} + Sq^1w_{4t+4} = 0$,
 k_1^2 : $Sq^2k_1^1 + Sq^1k_2^1 = 0$.

5.2. Postnikov resolution II for the fibration π : B Spin $(8t+3) \rightarrow B$ Spin for stable spin bundles over complexes of dimension $\leq 8t+7$ for t>0.

Defining relations for k-invariants:

$$k_1^0 = w_{8t+4},$$

 k_1^1 : $Sq^2Sq^1w_{8t+4} = 0,$
 k_2^1 : $(Sq^4 + w_4)w_{8t+4} = 0,$
 k_1^2 : $Sq^2k_1^1 = 0.$

5.3. Postnikov resolution III for the fibration π : B Spin $(8t+1) \rightarrow B$ Spin for stable spin bundles over complexes of dimension $\leq 8t+7$ for t>0.

Defining relations for k-invariants:

$$\begin{split} k_1^0 &= w_{8t+2}, & k_2^0 &= w_{8t+4}, \\ k_1^1 \colon Sq^2w_{8t+2} &= 0, \\ k_2^1 \colon Sq^2Sq^1w_{8t+2} + Sq^1w_{8t+4} &= 0, \\ k_3^1 \colon (Sq^4 + \cdot w_4)w_{8t+2} &= 0, \\ k_4^1 \colon (Sq^4 + \cdot w_4)w_{8t+4} &= 0, \\ k_1^2 \colon Sq^2k_1^1 + Sq^1k_2^1 &= 0. \end{split}$$

5.4. Postnikov resolution IV for the fibration π : B Spin $(8t-1) \rightarrow B$ Spin for stable spin bundles over complexes of dimension $\leq 8t+5$ for t>1. Defining relations for k-invariants:

$$k_1^0 = w_{8t},$$

$$k_1^1 \colon Sq^2Sq^1w_{8t} = 0,$$

$$k_2^1 \colon (Sq^4 + \cdot w_4)Sq^1w_{8t} = 0,$$

$$k_3^1 \colon (Sq^4 + \cdot w_4)Sq^2w_{8t} = 0,$$

$$k_1^2 \colon Sq^2k_1^1 = 0,$$

$$k_2^2 \colon Sq^2Sq^1k_1^1 + Sq^1k_2^1 = 0,$$

$$k_3^2 \colon Sq^2k_1^2 + Sq^1k_2^2 = 0.$$

5.5. Postnikov resolution V for the fibration $\pi: B(4t+1) \to B$ for stable orient-

able and spin bundles over complexes of dimension $\le 4t+5$ for t>1. Defining relations for k-invariants:

$$B = BSO,$$

$$k_1^0 = w_{4t+2},$$

$$k_2^0 = w_{4t+4},$$

$$k_1^1 : (Sq^2 + \cdot w_2)w_{4t+2} = 0,$$

$$k_2^1 : (Sq^2 + \cdot w_2)Sq^1w_{4t+2} + Sq^1w_{4t+4} = 0,$$

$$k_3^1 : (Sq^4 + \cdot w_4)w_{4t+2} + Sq^2w_{4t+4} = 0, \quad t \text{ odd,}$$

$$k_3^1 : (Sq^4 + \cdot w_4)w_{4t+2} + w_2w_{4t+4} = 0, \quad t \text{ even.}$$

$$k_1^2 : (Sq^2 + \cdot w_2)k_1^1 + Sq^1k_2^1 = 0.$$

The k-invariants for B = B Spin are obtained by deleting w_2 in the above defining relations.

REFERENCES

- 1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104. MR 25 #4530.
- 2. J. Adem, On secondary cohomology operations, Bol. Soc. Mat. Mexicana (2) 7 (1962), 95-110. (Spanish) MR 29 #5243.
- 3. J. Adem and S. Gitler, Secondary characteristic classes and the immersion problem, Bol. Soc. Mat. Mexicana (2) 8 (1963), 53-78. MR 29 #5255.
- 4. J. Adem, S. Gitler and M. Mahowald, *Embedding and immersion of projective spaces*, Bol. Soc. Mat. Mexicana (2) 10 (1965), 84-88. MR 36 #3369.
- 5. M. F. Atiyah, *Thom complexes*, Proc. London Math. Soc. (3) 11 (1961), 291-310. MR 24 #A1727.
 - 6. A. Dold, Erzeugende der Thomschen Algebra N, Math. Z. 65 (1956), 25-35. MR 18, 60.
- 7. S. Feder, Non-immersion theorems for complex and quaternionic projective spaces, Bol. Soc. Mat. Mexicana (2) 11 (1966), 62-67. MR 38 #721.
- 8. S. Gitler and M. Mahowald, The geometric dimension of real stable vector bundles, Bol. Soc. Mat. Mexicana (2) 11 (1966), 85-107. MR 37 #6922.
- 9. S. Gitler, M. Mahowald and R. J. Milgram, Secondary cohomology operations and divisibility of the Chern class, Proc. Amer. Math. Soc. (to appear).
 - 10. H. Glover, Thesis, University of Michigan, Ann. Arbor, Mich., 1967.
- 11. A. Haefliger and M. W. Hirsch, On the existence and classification of differentiable embeddings, Topology 2 (1963), 129-135. MR 26 #6981.
- 12. M. W. Hirsch, *Immersion of manifolds*, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 22 #9980.
- 13. C. S. Hoo and M. E. Mahowald, Some homotopy groups of Stiefel manifolds, Bull. Amer. Math. Soc. 71 (1965), 661-667. MR 31 #1675.
- 14. M. E. Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349. MR 28 #620.
 - 15. ——, Some Whitehead products in Sⁿ, Topology 4 (1965), 17-26. MR 31 #2724.
- 16. M. E. Mahowald and F. P. Peterson, Secondary cohomology operations on the Thom class, Topology 2 (1963), 367-377. MR 28 #612.
- 17. M. E. Mahowald and R. F. Williams, The stable homotopy of K(Z, n), Bol. Soc. Mat. Mexicana (2) 11 (1966), 22–28. MR 38 #3867.

- 18. W. S. Massey and F. P. Peterson, On the dual Stiefel-Whitney classes of a manifold, Bol. Soc. Mat. Mexicana (2) 8 (1963), 1-13. MR 29 #628.
- 19. ——, The cohomology structure of certain fibre spaces. I, Topology 4 (1965), 47-65. MR 32 #6459.
- 20. G. F. Paechter, The groups $\pi_r(V_{n,m})$. I, Quart. J. Math. Oxford Ser. (2) 7 (1956), 249–268. MR 24 #A1725.
- 21. A. D. Randall, Some immersion theorems for projective spaces, Trans. Amer. Math. Soc. 147 (1970), 135-151.
- 22. B. J. Sanderson and R. L. E. Schwarzenberger, Non-immersion theorems for differentiable manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 319-322. MR 26 #5589.
 - 23. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007.
- 24. E. Thomas, Seminar on fiber spaces, Lecture Notes in Math., no. 13, Springer-Verlag, Berlin and New York, 1966. MR 34 #3582.
- 25. ———, Postnikov invariants and higher order cohomology operations, Ann. of Math. (2) **85** (1967), 184-217. MR **35** #1029.
- 26. ———, Real and complex vector fields on manifolds, J. Math. Mech. 16 (1967), 1183-1205. MR 35 #1030.
- 27. ——, The index of a tangent 2-field, Comment. Math. Helv. 42 (1967), 86-110. MR 35 #6158.
- 28. ——, The span of a manifold, Quart. J. Math. Oxford Ser. (2) 19 (1968), 225-244. MR 38 #2804.
- 29. ——, On the existence of immersions and submersions, Trans. Amer. Math. Soc. 132 (1968), 387-394. MR 37 #926.
- 30. ——, An exact sequence for principal fibrations, Bol. Soc. Mat. Mexicana (2) 12 (1967), 35-45. MR 39 #4847.
- 31. ——, Vector fields on low dimensional manifolds, Math. Z. 103 (1968), 85-93. MR 36 #7156.
- 32. J. J. Ucci, Immersions and embeddings of Dold manifolds, Topology 4 (1965), 283-293. MR 32 #4703.

University of Notre Dame, Notre Dame, Indiana 46556